Recent Development of Rank-Constrained and Distributed Statistical Learning Date : Thursday, 31 March 2022 Time: 10 am - 11 am Speaker: Assistant Professor Ziwei Zhu Abstract: In this talk, I will present two recent works on rank-constrained least squares and distributed statistical learning respectively. The first part of the talk highlights a near optimal in-sample prediction error bound for the rank-constrained least squares estimator with no assumption on the design matrix. Lying at the heart of the proof is a covering number bound for the family of projection operators corresponding to the subspaces spanned by the design. By leveraging this complexity result, we perform a power analysis for a permutation test on the existence of a low-rank signal under the high-dimensional trace regression model. The second part of the talk proposes a new one-shot distributed learning algorithm through refitting ...
Seminar Notice Board